December 2, 2021

robertlpham

Just another WordPress site

A Brief History of Transformers (Not the Robot Kind)

I have always disliked exaggerated claims of imminent scientific and technical breakthroughs, such as inexpensive fusion, cheap supersonic travel, and the terraforming of other planets. But I am fond of the simple devices that do so much of the fundamental work of modern civilization, particularly those that do so modestly—or even invisibly.

No device fits this description better than a transformer. Non-engineers may be vaguely aware that such devices exist, but they have no idea how they work and how utterly indispensable they are for everyday life. (A transformer is a device that transfers electricity between two circuits while changing voltage, that is the “pressure” of the electric current’s power.)

The theoretical foundation was laid in the early 1830s, with the independent discovery of electromagnetic induction by Michael Faraday and Joseph Henry. They showed that a changing magnetic field can induce a current of a higher voltage (known as “stepping up”) or a lower one (“stepping down”). But it took another half-century before Lucien Gaulard, John Dixon Gibbs, Charles Brush, and Sebastian Ziani de Ferranti could design the first useful transformer prototypes. Next, a trio of Hungarian engineers—Ottó Bláthy, Miksa Déri, and Károly Zipernowsky—improved the design by building a toroidal (doughnut-shaped) transformer, which they exhibited in 1885.

The very next year, a better design was introduced by a trio of American engineers—William Stanley, Albert Schmid, and Oliver B. Shallenberger, who were working for George Westinghouse. The device soon assumed the form of the classic Stanley transformer that has been retained ever since: a central iron core made of thin silicon steel laminations, one part shaped like an “E” and the other shaped like an “I” to make it easy to slide wound copper coils into place.

important link
address
hop over to this web-site
my website
browse around here
Recommended Site
Your Domain Name
Web Site
click this site
hop over to this site
i was reading this
click here to read
read here
i loved this
my blog
click now
you can try these out
informative post
top article
useful site
click this over here now
moved here
resource
about his
navigate to this site
click this
click here for more info
investigate this site
more helpful hints
read
over at this website
find
go to the website
try this site
look at more info
look what i found
Full Report
websites
Extra resources
get more
like it
click here for more
find out here now
this hyperlink
home
site here
discover here
click here for info
try this website
go
look at here
Visit Your URL
see this website
visit this page
Click Here
check this
browse around these guys
redirected here
visit this site right here
review
have a peek at this website
right here
why not try this out
article source
visite site
web link
you could try this out
description
my latest blog post
find out this here
wikipedia reference
find more information
continue reading this
this post
index
official website
go to these guys
learn the facts here now
Related Site
Click This Link

In his address to the American Institute of Electrical Engineers in 1912, Stanley rightly marveled at how the device provided “such a complete and simple solution for a difficult problem. It so puts to shame all mechanical attempts at regulation. It handles with such ease, certainty, and economy vast loads of energy that are instantly given to or taken from it. It is so reliable, strong, and certain. In this mingled steel and copper, extraordinary forces are so nicely balanced as to be almost unsuspected.”

The biggest modern incarnations of this enduring design have made it possible to deliver electricity across great distances. In 2018, Siemens delivered the first of seven record-breaking 1,100-kilovolt transformers that will enable electricity supply to several Chinese provinces linked to a nearly 3,300-kilometer-long, high-voltage DC line.

The sheer number of transformers has risen above anything Stanley could have imagined, thanks to the explosion of portable electronic devices that have to be charged. In 2016 the global output of smartphones alone was in excess of 1.8 billion units, each one supported by a charger housing a tiny transformer. You don’t have to take your phone charger apart to see the heart of that small device; a complete iPhone charger teardown is posted on the internet, with the transformer as one of its largest components.

But many chargers contain even tinier transformers. These are non-Stanley (that is, not wire-wound) devices that take advantage of the piezoelectric effect—the ability of a strained crystal to produce a current, and of a current to strain or deform a crystal. Sound waves impinging on such a crystal can produce a current, and a current flowing through such a crystal can produce sound. One current can in this way be used to create another current of a very different voltage.

And the latest innovation is electronic transformers. They are much reduced in volume and mass compared with traditional units, and they will become particularly important for integrating intermittent sources of electricity—wind and solar—into the grid and for enabling DC microgrids. Without transformers we would not have the age of ubiquitous electricity, and be stuck in the era of oil lamps and telegraph.


From Numbers Don’t Lie by Vaclav Smil, published by Penguin Books, an imprint of Penguin Publishing Group, a division of Penguin Random House, LLC. Copyright © 2020 by Vaclav Smil.


More Great WIRED Stories


If you buy something using links in our stories, we may earn a commission. This helps support our journalism. Learn more.